

CURSO: FUNDAMENTOS TEÓRICOS E METODOLÓGICOS PARA O ENSINO-APRENDIZAGEM DE ASTRONOMIA

DISCIPLINAS RELACIONADAS:		MINISTRANTES:
Física, Matemática, Geografia,	História,	Ana Maria Pereira
Ciências, Filosofia, Química.		Anderson Trogello
		Daniel Iria Machado
		Henri Araújo Leboeuf
		Janer Vilaça
		Oswaldo Barbosa Loureda
		Roberto Boczko
		Rodolfo Langhi
		Walmir Thomazi Cardoso

CARGA HORÁRIA TOTAL	Nº DE DIAS	CARGA HORÁRIA EM SALA DE AULA	PROPOSTA EXTRACURSO / EAD	PÚBLICO ALVO	Nº TOTAL DE VAGAS
60 h	16	48 h	12 h	Professores da Educação Básica	36

DIAS DA SEMANA	HORÁRIO
Terça-feira	Manhã ou Noite
Quarta-feira	Manhã ou Noite
Quinta-feira	Manhã ou Noite
Sexta-feira	Manhã ou Noite
Sábado	Manhã

EMENTA

Visão Geral sobre Astronomia: Concepções alternativas em Astronomia; breve história da Astronomia; estrutura do Universo; Teoria do Big Bang; galáxias e a Via Láctea; distâncias no Universo; nebulosas; aglomerados estelares; supernovas; instrumentos astronômicos.

Astronomia nas Culturas: História da Astronomia; Uranografia; constelações; Arqueoastronomia; Etnoastronomia; mitos e histórias sobre o céu de diferentes povos; calendários; Astronomia na bandeira do Brasil.

Astronomia de Posição: polos geográficos; linha do equador; hemisférios; meridianos e paralelos; latitude e longitude; pontos cardeais; determinação dos pontos cardeais por meio de uma bússola; esfera celeste; polos celestes; equador celeste; meridianos celestes e paralelos celestes; zênite e nadir; meridiano local; altura e

azimute; localização geográfica por meio dos astros.

Evolução Estelar: origem das estrelas; brilho e magnitude; cor e temperatura das estrelas; fonte de energia das estrelas; fases da evolução estelar; estágios finais de uma estrela; produção de elementos químicos nas estrelas;

Sistemas Planetários: origem dos sistemas planetários; exoplanetas; Astrobiologia.

Sistema Solar: origem do sistema solar; características físicas do Sol; atividade solar; espectro solar; influência do Sol sobre o planeta Terra; corpos iluminados e luminosos; planetas telúricos e jovianos; características físicas e orbitais dos planetas; atmosferas planetárias; satélites naturais; planetas anões; asteroides; meteoritos; cometas; centauros; objetos transnetunianos (TNOs); cinturão de Kuiper; nuvem de Oort; exploração do Sistema Solar por sondas espaciais.

Planeta Terra: estrutura física e geológica da Terra; rotação e revolução da Terra; características orbitais da Terra; achatamento da Terra e precessão dos equinócios; nutação; dia e noite; solstícios e equinócios; estações do ano; campo magnético e magnetosfera terrestre; auroras; zona habitável; atmosfera terrestre; fenômenos atmosféricos naturais; clima e tempo.

Sistema Sol-Terra-Lua: formação e geologia lunar; características físicas e orbitais da Lua; interação gravitacional Terra-Lua; ciclo das fases da Lua; eclipses; mês sinódico; mês sideral; influência da Lua sobre a Terra; marés; rotação síncrona da Lua com a revolução.

Astronáutica e Ciências Espaciais: breve História da Astronáutica; Política e Tecnologia; corrida espacial; exploração da Lua pelo homem; programas e agências espaciais; centros de lançamentos de foguetes; ônibus espaciais; Telescópio Espacial Hubble; Estação Espacial Internacional; órbitas de satélites; lixo espacial.

Astronomia do Invisível: espectro eletromagnético; ondas eletromagnéticas; ondas de rádio e suas aplicações; Radioastronomia; radiação infravermelha e suas aplicações; Astronomia no infravermelho; luz visível; decomposição da luz; relação entre cor e temperatura; radiação ultravioleta e suas aplicações; Astronomia no ultravioleta; raios X e suas aplicações; Astronomia em raios X; raios gama e suas aplicações; Astronomia em raios gama.

Gravitação Universal: histórico da Lei da Gravitação Universal; Leis de Kepler;

propriedades das elipses; aceleração, massa; força; peso; baricentro; Lei da Gravitação Universal; campo gravitacional; corpos em órbita.

Relógios de Sol: breve histórico dos relógios de Sol; meio-dia solar; hora solar verdadeira; hora solar média; hora legal; polo celeste; movimento aparente do Sol na esfera celeste; sombra dos objetos; relógio de Sol horizontal; relógio de Sol analemático.

Noções de Planejamento Pedagógico e Metodologia de Investigação em Ensino: elaboração de um plano de ensino; tipos de pesquisa em Educação; técnicas de pesquisa em Educação; estrutura de um relatório de pesquisa; citações segundo as normas da ABNT; elaboração de referências segundo as normas da ABNT.

Atividades Práticas: determinação de pontos de referência, linhas de referência e coordenadas altazimutais em um modelo da esfera celeste em acrílico; construção de modelo com distâncias dos planetas ao Sol em escala; construção de modelo com diâmetros dos planetas e do Sol em escala; construção de órbitas elípticas com diferentes excentricidades; confecção de modelo para representação dos movimentos de rotação, translação, precessão e nutação da Terra; confecção de modelo para a representação da órbita da Terra, inclinação do eixo de rotação do planeta e as estações do ano; confecção de modelo para a representação do movimento aparente do Sol; confecção de modelo para a representação da órbita da Lua, das fases lunares e dos eclipses; confecção de modelo para a representação dos diâmetros da Terra e da Lua em escala; elaboração de um relógio sideral; simulação da formação de crateras de impacto; construção de um satélite artificial em papel; confecção de modelo para a representação do baricentro; simulação da curvatura do espaço produzida por um objeto massivo; decomposição da luz visível; construção de um espectroscópio didático; construção de relógios de Sol; observação e registro da sombra de um gnômon e a formação de um analema; observação do Sol com o filtro H-alfa ou análise de imagens do Sol recentes obtidas pela Internet; reconhecimento das constelações e dos astros com a utilização de cartas celestes e do software Stellarium; elaboração e uso de cadernos de observação do céu e de registros das constelações; observação e registro do movimento aparente do Sol em relação às constelações; observação e registro das lunações; observação e registro de meteoros; observação de objetos celestes com instrumentos óticos; sessão de planetário.

Atividades Complementares: observações do movimento aparente diário do Sol,

das constelações, do movimento aparente diário de uma constelação, das fases da Lua e dos meteoros; desenvolvimento e aplicação de um plano de ensino sobre um tema da Astronomia, com enfoque apropriado para a Educação Básica.

OBJETIVOS

Propiciar o aprofundamento de conceitos astronômicos fundamentais e relacionados a diferentes áreas do conhecimento; proporcionar a identificação de concepções
alternativas e a construção de novos conceitos astronômicos; favorecer o desenvolvimento de abordagens para o ensino da Astronomia na Educação Básica que considerem a investigação, observação, indagação e multiplicação de conhecimentos; aguçar
a curiosidade.

METODOLOGIA

A metodologia do curso, pelo viés do pluralismo metodológico (LABURU; ARRUDA; NARDI, 2003), contempla o estímulo ao uso de ferramentas de ensino-aprendizagem em uma abordagem investigativa, com ações pedagógico-científicas. A pluralidade metodológica, como procedimento instrucional variado e possível, permite:

- a) a utilização de novas estratégias de ensino com recursos tecnológicos que possibilitam a expansão da criatividade, iniciativa, associação de ideias e bagagem cognitiva;
- b) o reconhecimento de concepções alternativas na área de Astronomia e a construção de conceitos básicos e prioritários para o ensino dessa Ciência, favorecendo a identificação de erros conceituais básicos em livros didáticos ou repassados em sala de aula;
- c) o ensino de significados cientificamente corretos, despertando o interesse pela Ciência por meio de um ensino multidirecional e com intercomunicação entre as disciplinas, aprimorando os vínculos entre elas.

A opção por um ou mais métodos para ensinar conteúdos de Ciências deve considerar as múltiplas variáveis envolvidas no processo pedagógico, reconhecendo-se que não existem procedimentos metodológicos capazes de satisfazer a todos os alunos, pois a aprendizagem é um fenômeno complexo, dependente da trajetória formativa e da história de vida do educando.

REFERÊNCIAS

ALBRECHT, E.; VOELZKE, M. R. Diferentes metodologias aplicadas ao ensino de Astronomia. **Boletim da Sociedade Astronômica Brasileira,** São Paulo, v. 27, n. 1, p.106, 2007.

BRASIL. Secretaria de Educação Média e Tecnologia. **Parâmetros curriculares nacionais:** ciências da natureza, matemática e suas tecnologias. Brasília, 1999.

. Parâmetros curriculares nacionais: ciências naturais. Brasília, 1997.

_____. **Parâmetros curriculares nacionais:** terceiro e quarto ciclos do ensino fundamental – ciências naturais. Brasília, 1998.

CHASSOT, A. **Alfabetização científica:** questões e desafios para a educação. Porto Alegre: Unijui, 2006.

CHERMAN, A.; VIEIRA, F. **O tempo que o tempo tem:** por que o ano tem 12 meses e outras curiosidades sobre o calendário. Rio de Janeiro: Jorge Zahar, 2008.

CHEVALLARD, Y. La transposición didáctica: del saber sábio al saber enseñado. Buenos Aires: AIQUE, 1991. Disponível em: http://www.e-

historia.cl/cursosudla/EDU414/recursosdeapoyo/La%20Trasposicion%20Did%C3%A1ctic a%20-%20Del%20Saber%20Sabio%20al%20Saber%20Ense%C3%B1ado%20-%20Yves%20Chevallard.pdf>. Acesso em: 29 set.2012.

COMINS, N. F.; KAUFMANN III, W. J. **Descobrindo o Universo.** Porto Alegre: Bookman, 2010.

DAMINELI, A.; STEINER, J. (Org.). **O fascínio do Universo.** São Paulo: Odysseus, 2010.

GARCIA, C. M. **Formação de professores:** para uma mudança educativa. Porto: Porto Editora. 1999.

HETEM JUNIOR, A.; HETEM, J. G. **Ombros de gigantes:** História da Astronomia em quadrinhos. São Paulo: Instituto de Astronomia, Geofísica e Ciências Atmosféricas/USP, 2009.

IVANISSEVICH, A..; WUENSCHE, C. A.; ROCHA, J. F. V. **Astronomia hoje.** Rio de Janeiro: Instituto Ciência Hoje, 2010.

LABURU, C. E.; ARRUDA, S. M.; NARDI, R. Pluralismo metodológico no ensino de Ciências. **Ciência & Educação**, Bauru, v. 9, n. 2, p. 247-260, 2003. Disponível em: http://www.scielo.br/pdf/ciedu/v9n2/07.pdf>. Acesso em: 9 set. 2011.

LAKATOS, E. M.; MARCONI, M. de A. **Fundamentos de metodologia científica.** 3. ed. São Paulo: Atlas, 1991.

LANGHI, R. Educação em Astronomia: da revisão bibliográfica sobre concepções alternativas à necessidade de uma ação nacional. **Caderno Brasileiro de Ensino de Física,** Florianópolis, v. 28, n.2, p. 373-399, ago. 2011.

LANGHI, R.; NARDI, R. Ensino da astronomia no Brasil: educação formal, informal, não formal e divulgação científica. **Revista Brasileira de Ensino de Física,** São Paulo, v. 31, n. 4, p.4402-1 a 4402-11, 2009.

MARTÍNEZ, E.; FLORES, J. (Comp.). La popularización de la ciencia y la tecnología: reflexiones básicas. México: Progreso, 1997.

MAYALL, R. N.; MAYALL, M. W. **Sundials:** their construction and use. Mineola: Dover, 2000.

MOURÃO, R. R. F. **Dicionário enciclopédico de astronomia e astronáutica.** Rio de Janeiro: Nova Fronteira, 1995.

NOGUEIRA, S.; CANALLE, J. B. **Astronomia.** Brasília: MEC/SEB; MCT/AEB, 2009. (Coleção Explorando o Ensino, v. 11).

NOGUEIRA, S.; PESSOA FILHO, J. B.; SOUZA, P. N. **Astronáutica.** Brasília: MEC/SEB; MCT/AEB, 2009. (Coleção Explorando o Ensino, v. 12).

OLIVEIRA, G. S. *et al.* **Mudanças climáticas.** Brasília: MEC/SEB; MCT/AEB, 2009. (Coleção Explorando o Ensino, v. 13).

RIDPATH, I. Astronomia: guia Ilustrado. Rio de Janeiro: Jorge Zahar, 2007.

SAWYER III, F. W. **Of analemmas, mean time and the analemmatic sundial.** [S.l.]: [s.n.], [ca.1998]. Disponível em: http://www.longwoodgardens.org/docs/analemma.pdf>. Acesso em: 3 set. 2010.

WAUGH, A. E. Sundials: their theory and construction. New York: Dover, 1973.